Axiom:Paaraxiom: Unterschied zwischen den Versionen

aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg
Wechseln zu:Navigation, Suche
Zeile 12: Zeile 12:
  
 
<references/>
 
<references/>
 +
 +
==Siehe auch==
 +
*[[Geordnetes Paar]]

Version vom 7. September 2014, 19:41 Uhr

TO BE DONE

Für alle Elemente $a$, $b$, $c$, $d$ gilt, dass die Paare $[a,b]$ und $[c,d]$ genau dann gleich sind,
wenn sowohl $a$ und $c$ als auch $b$ und $d$ einander gleich sind.
$\bigwedge a,b: [a,b] = [c,d] \Leftrightarrow a=c \,\&\,b=d $
$\forall a,b: [a,b] = [c,d] \leftrightarrow a=c \,\wedge\,b=d $

von Giuseppe Peano definiert[1]

1 Quellen

  1. Peano (1897b): Giuseppe Peano; Formulaire de Mathématiques; Band: 2; Verlag: Bocca frères und Ch. Clausen; Web-Link; 1897; Quellengüte: 5 (Buch), S. 6, Nr. 70 und Nr. 71

2 Siehe auch