Axiom:Paaraxiom: Unterschied zwischen den Versionen

aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg
Wechseln zu:Navigation, Suche
(Siehe auch)
Zeile 1: Zeile 1:
 +
{{Qualität
 +
|correctness        = 4
 +
|extent              = 3
 +
|numberOfReferences  = 5
 +
|qualityOfReferences = 5
 +
|conformance        = 5
 +
}}
 
==Definitionen==
 
==Definitionen==
 
===Voraussetzung===
 
===Voraussetzung===

Version vom 22. September 2014, 14:03 Uhr

Dieser Artikel erfüllt die GlossarWiki-Qualitätsanforderungen nur teilweise:

Korrektheit: 4
(großteils überprüft)
Umfang: 3
(einige wichtige Fakten fehlen)
Quellenangaben: 5
(vollständig vorhanden)
Quellenarten: 5
(ausgezeichnet)
Konformität: 5
(ausgezeichnet)

1 Definitionen

1.1 Voraussetzung

Es sei $[\cdot,\cdot]$ ein zweistelliger Operator, der „Elemente“/„Objekte“ aud „Elemente“/„Objekte“ abbildet. Falls dieser Operator das Paaraxiom erfüllt, heißen Elemente der Art $[a,b]$ geordnete Paare.

1.2 Paaraxiom: Definition in Metametasprache

Zwei Paare $[a,b]$ und $[c,d]$ sind genau dann gleich, wenn sowohl $a$ und $c$ als auch $b$ und $d$ gleich sind.

1.3 Paaraxiom: Definition in Metasprache

$\bigwedge a,b: [a,b] = [c,d] \Leftrightarrow a=c \,\&\,b=d $

1.4 Paaraxiom: Definition in Objektsprache

$\forall a,b: [a,b] = [c,d] \leftrightarrow a=c \,\wedge\,b=d $

2 Geschichte

Das Paaraxiom wurde 1897 von Guiseppe Peano eingeführt.[1]

3 Eigenschaften von geordneten Paaren

Bei Paarmengen spielt die Reihenfolge der Elemente keine Rolle:

$\bigwedge a,b: \{a,b\} = \{b,a\}$

Im Gegensatz dazu sind geordnete Paare – wegen des Paaraxioms – tatsächlich geordnet:

$\bigwedge a,b: [a,b] = [b,a] \Leftrightarrow a = b$

4 Quellen

  1. Peano (1897b): Giuseppe Peano; Formulaire de Mathématiques; Band: 2; Verlag: Bocca frères und Ch. Clausen; Web-Link; 1897; Quellengüte: 5 (Buch), S. 6, Nr. 70 und Nr. 71

5 Siehe auch

  1. Geordnetes Paar