Axiom:Paaraxiom: Unterschied zwischen den Versionen

aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg
Wechseln zu:Navigation, Suche
(Siehe auch)
(Geschichte)
Zeile 20: Zeile 20:
  
 
==Geschichte==
 
==Geschichte==
Das Paaraxiom wurde 1897 von [[Giuseppe Peano]] eingeführt.<ref name="Peano (1897)">{{Quelle|Peano (1897)}}, S. 6, Nr. 70 und Nr. 71</ref>
+
Das Paaraxiom wurde 1897 von [[Giuseppe Peano]] eingeführt.<ref name="Peano (1897a)">{{Quelle|Peano (1897a)}}, S. 580</ref><ref name="Peano (1897b)">{{Quelle|Peano (1897b)}}, S. 6, Nr. 70 und Nr. 71</ref>
  
 
==Eigenschaften von geordneten Paaren==
 
==Eigenschaften von geordneten Paaren==

Version vom 23. März 2015, 11:34 Uhr

Dieser Artikel erfüllt die GlossarWiki-Qualitätsanforderungen nur teilweise:

Korrektheit: 4
(großteils überprüft)
Umfang: 3
(einige wichtige Fakten fehlen)
Quellenangaben: 5
(vollständig vorhanden)
Quellenarten: 5
(ausgezeichnet)
Konformität: 5
(ausgezeichnet)

1 Definitionen

1.1 Voraussetzung

Es sei $[\cdot,\cdot]$ ein zweistelliger Operator, der jeweils zwei „Elemente“/„Objekte“ des gegebenen Universums auf ein „Element“/„Objekt“ des Universums abbildet. Falls dieser Operator das Paaraxiom erfüllt, heißen Elemente der Art $[a,b]$ geordnete Paare.

1.2 Paaraxiom: Definition in Metametasprache

Zwei Paare $[a,b]$ und $[c,d]$ sind genau dann gleich, wenn sowohl $a$ und $c$ als auch $b$ und $d$ gleich sind.

1.3 Paaraxiom: Definition in Metasprache dieses Wikis

$\forall a,b: [a,b] = [c,d] \Leftrightarrow a=c \,\&\,b=d $

1.4 Paaraxiom: Definition in Objektsprache dieses Wikis

$\bigwedge a,b: [a,b] = [c,d] \leftrightarrow a=c \,\wedge\,b=d $

2 Geschichte

Das Paaraxiom wurde 1897 von Giuseppe Peano eingeführt.[1][2]

3 Eigenschaften von geordneten Paaren

Bei Paarmengen spielt die Reihenfolge der Elemente keine Rolle:

$\bigwedge a,b: \{a,b\} = \{b,a\}$

Im Gegensatz dazu sind geordnete Paare – wegen des Paaraxioms – tatsächlich geordnet:

$\bigwedge a,b: [a,b] = [b,a] \Leftrightarrow a = b$

4 Quellen

  1. Peano (1897a): Giuseppe Peano; Studii de Logica Matematica; Atti della Reale Accademia delle scienze di Torino; Reihe: Classe di Scienze Fisiche Matematiche e Naturali; Band: 32; Seite(n): 565-583; Verlag: Accademia delle Scienze di Torino; Adresse: Torino; Web-Link; 1897 (Sammelband), S. 580
  2. Peano (1897b): Giuseppe Peano; Formulaire de Mathématiques; Band: 2; Verlag: Bocca frères und Ch. Clausen; Web-Link; 1897; Quellengüte: 5 (Buch), S. 6, Nr. 70 und Nr. 71

5 Siehe auch