Beta-Verteilung: Unterschied zwischen den Versionen

aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg
Zeile 58: Zeile 58:
=Zusammenhang zwischen allgemeiner und standardisierter Beta-Verteilung=
=Zusammenhang zwischen allgemeiner und standardisierter Beta-Verteilung=


In [[Beta-Verteilung (standardisiert)]] wird eine speziellere Dichtefunktion <math>f_{X,\alpha,\beta}\!</math> definiert.
In [[Beta-Verteilung (standardisiert)]] wird eine speziellere Dichtefunktion <math>f_{\Beta V(\alpha,\beta)}\!</math> definiert.
Wie hängen die hier definierte allgemeine Form und die dort definierte spezielle Form zusammen?
Wie hängen die hier definierte allgemeine Form und die dort definierte spezielle Form zusammen?



Version vom 27. Januar 2011, 17:19 Uhr

Definition

Eine stetige Zufallsgröße $ X = \Beta V(\alpha,\beta,a,b)\; $ heißt beta-verteilt, wenn ihre Verteilungsfunktion durch die Dichtefunktion

$ f_X = f_{\Beta V(\alpha,\beta,a,b)}(x) := \begin{cases} \frac{(x-a)^{\alpha -1}\cdot (b-x)^{\beta-1}}{\Beta(\alpha,\beta)\cdot (b-a)^{\alpha+\beta-1}}& \mbox{wenn } a \le x \le b \\ 0 & \mbox{sonst } \end{cases} $

beschrieben werden kann. $ \Beta(\alpha,\beta)\! $ ist dabei die Beta-Funktion.

$ \alpha,\,\beta,\,a $ und $ b\, $ heißen Parameter der Verteilung. Sie müssen die in der Tabelle angegebenen Bedingungen erfüllen.

Eigenschaften einer beta-verteilten Zufallsgröße

Parameter
(vgl. Parameter der
Dreiecksverteilung)
$ \alpha \in ]0,\infty[ $
$ \beta \in ]0,\infty[ $
$ a \in ]-\infty,\infty[ $
$ b \in ]-\infty,\infty[,\,b>a $

$ d := b-a > 0\! $
Dichtefunktion
$ f_{X,\alpha,\beta,a,b}(x) = \begin{cases} \frac{(x-a)^{\alpha -1}\cdot (b-x)^{\beta-1}}{\Beta(\alpha,\beta)\cdot d^{\alpha+\beta-1}}& \mbox{wenn } a \le x \le b \\ 0 & \mbox{sonst } \end{cases} $
Stetigkeit
$ f_X(x) \mbox{ ist stetig auf }]-\infty,\infty[\! $
Träger
$ f_X(x) \ne 0 \Leftrightarrow x \in ]a,b[ \! $
Modus
$ c := a + d\frac{\alpha -1}{\alpha + \beta -2} = \frac{b(\alpha -1)+ a(\beta-1)}{\alpha+\beta-2} $
$ \operatorname{md}_X = \{c\}, \mbox{ falls } \alpha, \beta \ge 1 \mbox{ und } \alpha\beta > 1\! $
Erwartungswert
$ \mu(X) = \frac{b\alpha+ a\beta}{\alpha+\beta} $
Varianz
$ \operatorname{Var}(X) = \frac{d^2\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} $
Standardabweichung
$ \sigma(X) = \frac{d}{(\alpha+\beta)}\sqrt{\frac{\alpha\beta}{\alpha+\beta+1}} $

Zusammenhang zwischen allgemeiner und standardisierter Beta-Verteilung

In Beta-Verteilung (standardisiert) wird eine speziellere Dichtefunktion $ f_{\Beta V(\alpha,\beta)}\! $ definiert. Wie hängen die hier definierte allgemeine Form und die dort definierte spezielle Form zusammen?

Zunächst sieht man anhand der Definitionen sofort, dass jede Dichtefunktion einer standardisierten Beta-Verteilungen auch eine Dichtefunktion einer allgemeinen Beta-Verteilungen ist:

$ f_{\Beta V(\alpha,\beta)}(x) = f_{\Beta V(\alpha,\beta,0,1)}(x) \! $

Umgekehrt können alle Dichtefunktionen allgemeinen Beta-Verteilungen durch Linear-Transformationen aus entsprechenden Dichtefunktionen der standardisierten Beta-Verteilungen erzeugt werden:

$ f_{\Beta V(\alpha,\beta,a,b)}(x) = \frac{1}{b-a}\cdot f_{\Beta V(\alpha,\beta)}\left(\frac{x-a}{b-a}\right) $

(Beweis der zweiten Aussage)

Quellen

Siehe auch


Dieser Artikel ist GlossarWiki-konform.
In diesem Artikel sollten die Quellenangaben überarbeitet werden.
Bitte die Regeln der GlossarWiki-Quellenformatierung beachten.