Dreiecksverteilung

aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg

Dieser Artikel erfüllt die GlossarWiki-Qualitätsanforderungen nur teilweise:

Korrektheit: 5
(vollständig überprüft)
Umfang: 3
(einige wichtige Fakten fehlen)
Quellenangaben: 4
(fast vollständig vorhanden)
Quellenarten: 5
(ausgezeichnet)
Konformität: 4
(sehr gut)

Definition

Eine stetige Zufallsgröße $ X = D(a,b,c)\, $ heißt dreiecksverteilt, wenn ihre Verteilungsfunktion durch die Dichtefunktion

$ f_X(x) = f_{D(a,b,c)}(x) := \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & \mbox{wenn } a \le x \le c \\ \frac{2(b-x)}{(b-a)(b-c)} & \mbox{wenn } c < x \le b \\ 0 & \mbox{sonst } \end{cases} $

beschrieben werden kann. $ \scripttext{a \in ]-\infty,\infty[} $, $ \scripttext{b \in ]a,\infty[} $ und $ \scripttext{c \in ]a,b[} $ heißen Parameter der Verteilung.

(vgl. Standard-Dreiecksverteilung)

Eigenschaften einer dreiecksverteilten Zufallsgröße

Parameter
(vgl. Parameter der
standardisierten
Dreiecksverteilung)
$ a \in ]-\infty,\infty[ $
$ b \in ]a,\infty[ $
$ c \in ]a,b[ $

$ d := b-a\! $
$ m := \frac{c-a}{b-a} \in ]0,1[,\,1-m=\frac{b-c}{b-a},\,c = a+md = b - (1-m)d $

$ m $ beschreibt den prozentualen Abstand von $ c $ zu $ a $ bzgl. $ b $

$ 1-m $ beschreibt den prozentualen Abstand von $ c $ zu $ b $ bzgl. $ a $
Dichtefunktion
$ f_X(x) := \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} = \frac{2(x-a)}{md^2} & \mbox{wenn } a \le x \le c \\ \frac{2(b-x)}{(b-a)(b-c)} = \frac{2(b-x)}{(1-m)d^2} & \mbox{wenn } c < x \le b \\ 0 & \mbox{sonst } \end{cases} $
Stetigkeit
$ f_X(x) \mbox{ ist stetig auf }]-\infty,\infty[\! $
Träger
$ f_X(x) \ne 0 \Leftrightarrow x \in ]a,b[ \! $
Verteilungsfunktion
$ F_X(x) = \begin{cases} 0 & \mbox{wenn } x < a\\ 0+\frac{(x-a)^2}{(b-a)(c-a)} = 0+\frac{(x-a)^2}{md^2} & \mbox{wenn } a \le x \le c \\ 1-\frac{(b-x)^2}{(b-a)(b-c)} = 1-\frac{(b-x)^2}{(1-m)d^2} & \mbox{wenn } c < x \le b \\ 1 & \mbox{wenn } b < x \end{cases} $
Modus
$ \operatorname{md}_X = \{c\} = \{a+md\},\,f_X(c)=\frac{2}{b-a}=\frac{2}{d}\! $
Erwartungswert
$ \mu(X) = \frac{a+b+c}{3} = a+\frac{(1+m)d}{3} $
p-Quantil
$ F_X^{-1}(p) = \begin{cases} a+d\sqrt{mp} & \mbox{wenn } 0 \le p \le m \\ b-d\sqrt{(1-m)(1-p)} & \mbox{wenn } m < p \le 1 \end{cases} $
Median
$ F_X^{-1}(0,5) = \begin{cases} a+\frac{\sqrt{2d(c-a)}}{2} = a+d\frac{\sqrt{2m}}{2} & \mbox{wenn } 0{,}5 < m \mbox{ bzw. } \frac{b+a}{2} < c\\ a+\frac{d}{2} = b-\frac{d}{2} & \mbox{wenn } m = 0{,}5 \mbox{ bzw. } c = \frac{b+a}{2}\\ b-\frac{\sqrt{2d(b-c)}}{2} = b-d\frac{\sqrt{2(1-m)}}{2} & \mbox{wenn } m < 0{,}5 \mbox{ bzw. } c \le \frac{b+a}{2} \end{cases} $
Varianz
$ \operatorname{Var}(X) = \frac{a^2+b^2+c^2-ab-ac-bc}{18} = \frac{d^2(1-m+m^2)}{18} $
Standardabweichung
$ \sigma(X) = \frac{1}{6} \sqrt{2(a^2+b^2+c^2-ab-ac-bc)} = \frac{d}{6} \sqrt{2(1-m+m^2)} $

Zusammenhang zwischen allgemeiner und Standard-Dreiecksverteilung

Die Standard-Dreiecksverteilung hat eine speziellere Dichtefunktion $ \scripttext{f_{D(c)}} $. Wie hängen die hier definierte allgemeine Form und die dort definierte spezielle Form zusammen?

Zunächst sieht man anhand der Definitionen sofort, dass jede Dichtefunktion einer Standard-Dreiecksverteilung auch eine Dichtefunktion einer allgemeinen Dreiecksverteilungen ist:

$ f_{D(c)}(x) = f_{D(0,1,c)}(x) $

Umgekehrt können alle Dichtefunktionen von allgemeinen Dreiecksverteilungen durch Linear-Transformationen aus entsprechenden Dichtefunktionen der Standard-Dreiecksverteilungen erzeugt werden:

$ f_{D(a,b,c)}(x) = \frac{1}{b-a}\cdot f_{D((c-a)/(b-a))}\left(\frac{x-a}{b-a}\right) = \frac{1}{d}\cdot f_{D(m)}\left(\frac{x-a}{d}\right) $

(Beweis der zweiten Aussage)

Quellen

  1. Kowarschick (PM): Wolfgang Kowarschick; Vorlesung „Projektmanagement“; Hochschule: Hochschule Augsburg; Adresse: Augsburg; Web-Link; 2014; Quellengüte: 3 (Vorlesung)
  2. Rinne (2003): Horst Rinne; Taschenbuch der Statistik; Auflage: 3; Verlag: Wissenschaftlicher Verlag Harri Deutsch; Adresse: Frankfurt am Main; ISBN: 3817116950; 2003; Quellengüte: 5 (Buch)
  3. WikipediaEn: Triangular distribution
  4. Statwiki HU Berlin: Dreiecksverteilung

Siehe auch