Normalverteilung

aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg

Dieser Artikel erfüllt die GlossarWiki-Qualitätsanforderungen nur teilweise:

Korrektheit: 0
(nicht überprüft)
Umfang: 3
(einige wichtige Fakten fehlen)
Quellenangaben: 4
(fast vollständig vorhanden)
Quellenarten: 5
(ausgezeichnet)
Konformität: 4
(sehr gut)

Dieser Artikel wird derzeit von einem Autor gründlich bearbeitet. Die Inhalte sind daher evtl. noch inkonsistent.

Definition

Eine stetige Zufallsgröße $ \scriptstyle{X = NV(\mu,\sigma^2)} $ heißt normalverteilt, wenn ihre Verteilungsfunktion durch die Dichtefunktion $ \scriptstyle{f_X = f_{NV(\mu,\sigma^2)}} $ mit

$ \textstyle{f_X(x) = f_{NV(\mu,\sigma^2)}(x) := \frac {1}{\sigma\sqrt{2\pi}} e^{-\frac {1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}} $

beschrieben werden kann.

$ \scriptstyle{\mu} $ und $ \scriptstyle{\sigma^2} $ heißen Parameter der Verteilung. Sie müssen die in der Tabelle angegebenen Bedingungen erfüllen.

TO BE DONE

Eigenschaften einer normalverteilten Zufallsgröße

Parameter
$ \mu \in ]-\infty,\infty[ $
$ \sigma \in ]0,\infty[ $
Dichtefunktion
$ f_{NV(\mu,\sigma^2)}(x) := \frac {1}{\sigma\sqrt{2\pi}} e^{-\frac {1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} $
Stetigkeit
$ f_X(x) \mbox{ ist stetig auf }]-\infty,\infty[\! $
Träger
$ f_X(x) \ne 0 \Leftrightarrow x \in ]a,b[ \! $
Verteilungsfunktion
$ F_{NV(\mu,\sigma^2)}(x) =\int_-\infty^x \! f_{NV(\mu,\sigma^2)}(t) \, \mathrm{d} t $ ist nicht geschlossen darstellbar
Modus
$ \mu $
Erwartungswert
$ \mu $
Median
$ \mu $
Varianz
$ \sigma^2 $
Standardabweichung
$ \sigma $

Zusammenhang zwischen allgemeiner und standardisierter Beta-Verteilung

In Beta-Verteilung (standardisiert) wird eine speziellere Dichtefunktion $ f_{\Beta V(\alpha,\beta)}\! $ definiert. Wie hängen die hier definierte allgemeine Form und die dort definierte spezielle Form zusammen?

Zunächst sieht man anhand der Definitionen sofort, dass jede Dichtefunktion einer standardisierten Beta-Verteilungen auch eine Dichtefunktion einer allgemeinen Beta-Verteilungen ist:

$ f_{\Beta V(\alpha,\beta)}(x) = f_{\Beta V(\alpha,\beta,0,1)}(x) \! $

Umgekehrt können alle Dichtefunktionen allgemeinen Beta-Verteilungen durch Linear-Transformationen aus entsprechenden Dichtefunktionen der standardisierten Beta-Verteilungen erzeugt werden:

$ f_{\Beta V(\alpha,\beta,a,b)}(x) = \frac{1}{b-a}\cdot f_{\Beta V(\alpha,\beta)}\left(\frac{x-a}{b-a}\right) = \frac{1}{d}\cdot f_{\Beta V(\alpha,\beta)}\left(\frac{x-a}{d}\right) $

(Beweis der zweiten Aussage)

Quellen

  1. Kowarschick (PM): Wolfgang Kowarschick; Vorlesung „Projektmanagement“; Hochschule: Hochschule Augsburg; Adresse: Augsburg; Web-Link; 2014; Quellengüte: 3 (Vorlesung)
  2. Rinne (2003): Horst Rinne; Taschenbuch der Statistik; Auflage: 3; Verlag: Wissenschaftlicher Verlag Harri Deutsch; Adresse: Frankfurt am Main; ISBN: 3817116950; 2003; Quellengüte: 5 (Buch)
  3. WikipediaEn: Beta distribution
  4. Statwiki HU Berlin: Beta-Verteilung

Siehe auch