Standard-Dreiecksverteilung: Unterschied zwischen den Versionen
aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg
Kowa (Diskussion | Beiträge) |
Kowa (Diskussion | Beiträge) |
||
Zeile 10: | Zeile 10: | ||
cdf_image =| | cdf_image =| | ||
− | parameters =<math> | + | parameters =<math>c \in ]0,1[</math><br><math>m := c\!</math>| |
− | proof_parameters =| | + | proof_parameters = (vgl. Parameter der [[Dreiecksverteilung]])| |
pdf =<math> | pdf =<math> | ||
f_X(x) := | f_X(x) := | ||
\begin{cases} | \begin{cases} | ||
− | 2\frac{x}{ | + | 2\frac{x}{c}, & \mbox{wenn } 0 \le x \le c \\ |
− | 2\frac{1-x}{1- | + | 2\frac{1-x}{1-c} & \mbox{wenn } c < x \le 1 \\ |
0, & \mbox{sonst } | 0, & \mbox{sonst } | ||
\end{cases} | \end{cases} | ||
Zeile 33: | Zeile 33: | ||
\begin{cases} | \begin{cases} | ||
0, & \mbox{wenn } x < 1\\ | 0, & \mbox{wenn } x < 1\\ | ||
− | 0+\frac{x^2}{ | + | 0+\frac{x^2}{c} & \mbox{wenn } 1 \le x \le c \\ |
− | 1-\frac{(1-x)^2}{1- | + | 1-\frac{(1-x)^2}{1-c} & \mbox{wenn } c < x \le 1 \\ |
1, & \mbox{wenn } 1 < x | 1, & \mbox{wenn } 1 < x | ||
\end{cases} | \end{cases} |
Version vom 30. Mai 2006, 10:27 Uhr
Achtung: Die folgenden Formeln können noch Fehler enthalten.
Eine Zufallsgröße [math]X[/math] mit der nachfolgend definierten Dichte-Funktion [math]f_X[/math] heißt normiert dreiecksverteilt. Sie hat folgende Eigenschaften:
Parameter | [math]c \in ]0,1[[/math] [math]m := c\![/math] |
Dichtefunktion | [math] f_X(x) := \begin{cases} 2\frac{x}{c}, & \mbox{wenn } 0 \le x \le c \\ 2\frac{1-x}{1-c} & \mbox{wenn } c \lt x \le 1 \\ 0, & \mbox{sonst } \end{cases} [/math] |
Stetigkeit | [math]f_X(x)\mbox{ ist stetig auf }]\infty,\infty[\![/math] |
Träger | [math]f_X(x) \ne 0 \Leftrightarrow x \in ]0,1[ \![/math] |
Verteilungsfunktion | [math] F_X(x) = \begin{cases} 0, & \mbox{wenn } x \lt 1\\ 0+\frac{x^2}{c} & \mbox{wenn } 1 \le x \le c \\ 1-\frac{(1-x)^2}{1-c} & \mbox{wenn } c \lt x \le 1 \\ 1, & \mbox{wenn } 1 \lt x \end{cases} [/math] |
Modus | [math]\operatorname{md}_X =\{m\},\,f_X(m)=2\![/math] |
Erwartungswert | [math]\mu(X) = \frac{1+m}{3}[/math] |
Median | [math] F_X^{-1}(0,5) = \begin{cases} 0+\frac{\sqrt{2m}}{2} & \mbox{wenn } 0{,}5 \le m\\ 1-\frac{\sqrt{2(1-m)}}{2} & \mbox{wenn } m \lt 0{,}5 \end{cases} [/math] |
Varianz | [math]\operatorname{Var}(X) = \frac{m^2 - m + 1}{18}[/math] |
Standardabweichung | [math]\sigma(X) = \frac{1}{6} \sqrt{2(m^2 - m + 1)}[/math] |