Dreiecksverteilung
aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg
Parameter | $ a \in ]-\infty,\infty[ $ $ b \in ]-\infty,\infty[,\,b>a $ $ c \in]a,b[ $ $ m := \frac{c-a}{b-a},\,1-m=\frac{b-c}{b-a} $ |
Dichtefunktion | $ \left\{ \begin{matrix} \frac{2(x-a)}{(b-a)(c-a)} & \mathrm{for\ } a \le x \le c \\ & \\ \frac{2(b-x)}{(b-a)(b-c)} & \mathrm{for\ } c < x \le b \end{matrix} \right. $ |
Träger | $ a \le x \le b \! $ |
Verteilungsfunktion | $ \left\{ \begin{matrix} \frac{(x-a)^2}{(b-a)(c-a)} & \mathrm{for\ } a \le x \le c \\ & \\ 1-\frac{(b-x)^2}{(b-a)(b-c)} & \mathrm{for\ } c < x \le b \end{matrix} \right. $ |
Modus | $ c\, $ |
Erwartungswert | $ \frac{a+b+c}{3} $ |
Median | $ \left\{ \begin{matrix} a+\frac{\sqrt{(b-a)(c-a)}}{\sqrt{2}} & \mathrm{for\ } c\!\ge\!\frac{b\!-\!a}{2}\\ & \\ b-\frac{\sqrt{(b-a)(b-c)}}{\sqrt{2}} & \mathrm{for\ } c\!\le\!\frac{b\!-\!a}{2} \end{matrix} \right. $ |
Varianz | $ \frac{a^2+b^2+c^2-ab-ac-bc}{18} $ |
Schiefe | $ \frac{\sqrt 2 (a\!+\!b\!-\!2c)(2a\!-\!b\!-\!c)(a\!-\!2b\!+\!c)}{5(a^2\!+\!b^2\!+\!c^2\!-\!ab\!-\!ac\!-\!bc)^\frac{3}{2}} $ |
Wölbung | $ \frac{12}{5} $ |
Entropie | $ \frac{1}{2}+\ln\left(\frac{b-a}{2}\right) $ |
Momenterzeugende Funktion | $ 2\frac{(b\!-\!c)e^{at}\!-\!(b\!-\!a)e^{ct}\!+\!(c\!-\!a)e^{bt}} {(b-a)(c-a)(b-c)t^2} $ |
Charakteristische Funktion | $ -2\frac{(b\!-\!c)e^{iat}\!-\!(b\!-\!a)e^{ict}\!+\!(c\!-\!a)e^{ibt}} {(b-a)(c-a)(b-c)t^2} $ |