Satz:Aus der Existenz zweier Projektionsoperatoren für geordnete Paare folgt das Paaraxiom
aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg
Satz: Existenz des Paaraxioms
Wenn zwei Projektionsoperatoren $\pi_1$ und $\pi_2$ existieren, die für alle Elemente $a$ und $b$ die Bedingungen
$\pi_1([a,b]) = a$
$\pi_2([a,b]) = b$
erfüllen, dann ist auch das Paaraxiom
$\bigwedge a,b: [a,b] = [c,d] \leftrightarrow a=c \wedge b=d $
erfüllt.
Anmerkung
Dieser Satz ist die Umkehrung des Satzes „Existenz und Eindeutigkeit der Projektionsoperatoren“. Außerdem folgt aus dem Eindeutigkeitssatz sofort, dass zwei Projektionsfunktionen identisch sind, sofern sie überhaupt existieren.
Beweis
Wenn $[a,b] = [c,d]$, dann ist auch $a = \pi_1([a,b]) = \pi_1([c,d]) = c$ und $b = \pi_2([a,b]) = \pi_2([c,d]) = d$.
Die Rückrichtung Paaraxioms gilt trivialerweise wegen des „Prinzips von der Identität des Ununterscheidbaren“.