Beta-Verteilung: Unterschied zwischen den Versionen
aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg
Kowa (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
Kowa (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
Zeile 35: | Zeile 35: | ||
mode =<math>c := a + d\frac{\alpha -1}{\alpha + \beta -2} = \frac{b(\alpha -1)+ a(\beta-1)}{\alpha+\beta-2}</math><br> | mode =<math>c := a + d\frac{\alpha -1}{\alpha + \beta -2} = \frac{b(\alpha -1)+ a(\beta-1)}{\alpha+\beta-2}</math><br> | ||
<math>\operatorname{md}_X = \{c\}, \mbox{ falls } \alpha, \beta \ge 1 und \alpha\beta > 1\!</math>| | <math>\operatorname{md}_X = \{c\}, \mbox{ falls } \alpha, \beta \ge 1 \mbox{ und } \alpha\beta > 1\!</math>| | ||
proof_mode =| | proof_mode =| | ||
Version vom 1. Juni 2006, 18:50 Uhr
Definition
Eine stetige Zufallsgröße $ X $ heißt beta-verteilt, wenn ihre Verteilungsfunktion durch eine Dichtefunktion $ f_X $, wie sie der nachfolgenden Tabelle definiert wird, beschrieben werden kann.
Eigenschaften einer beta-verteilten Zufallsgröße
Parameter | $ \alpha \in ]0,\infty[ $ $ \beta \in ]0,\infty[ $ $ a \in ]-\infty,\infty[ $ $ b \in ]-\infty,\infty[,\,b>a $ $ d := b-a\! $ |
Dichtefunktion | $ f_X(x) := \begin{cases} \frac{(x-a)^{\alpha -1}(b-x)^{\beta-1}}{\Beta(\alpha,\beta)d^{\alpha+\beta-1}}& \mbox{wenn } a \le x \le b \\ 0 & \mbox{sonst } \end{cases} $ |
Stetigkeit | $ f_X(x) \mbox{ ist stetig auf }]\infty,\infty[\! $ |
Träger | $ f_X(x) \ne 0 \Leftrightarrow x \in ]a,b[ \! $ |
Modus | $ c := a + d\frac{\alpha -1}{\alpha + \beta -2} = \frac{b(\alpha -1)+ a(\beta-1)}{\alpha+\beta-2} $ $ \operatorname{md}_X = \{c\}, \mbox{ falls } \alpha, \beta \ge 1 \mbox{ und } \alpha\beta > 1\! $ |
Erwartungswert | $ \mu(X) = \frac{b\alpha+ a\beta}{\alpha+\beta} $ |
Varianz | $ \operatorname{Var}(X) = \frac{d^2\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} $ |
Standardabweichung | $ \sigma(X) = \frac{d}{(\alpha+\beta)}\sqrt{\frac{\alpha\beta}{\alpha+\beta+1}} $ |