Beta-Verteilung: Unterschied zwischen den Versionen
Kowa (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
Kowa (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
Zeile 2: | Zeile 2: | ||
Eine [[Stetige Zufallsgröße|stetige Zufallsgröße]] <math>X</math> heißt '''beta-verteilt''', wenn ihre [[Verteilungsfunktion]] durch | Eine [[Stetige Zufallsgröße|stetige Zufallsgröße]] <math>X</math> heißt '''beta-verteilt''', wenn ihre [[Verteilungsfunktion]] durch | ||
die [[Dichtefunktion]] | |||
<math>f_{X,\alpha,\beta,a,b}= | |||
\begin{cases} | |||
\frac{(x-a)^{\alpha -1}(b-x)^{\beta-1}}{\Beta(\alpha,\beta)d^{\alpha+\beta-1}}& \mbox{wenn } a \le x \le b \\ | |||
0 & \mbox{sonst } | |||
\end{cases} | |||
</math> | |||
beschrieben werden kann. <math>\Beta(\alpha,\beta)\!</math> ist dabei die [[Beta-Funktion]]. | |||
<math>\alpha\,\beta,\,a</math> und <math>b\,</math> heißen Parameter der Verteilung. Sie müssen die in der Tabelle angegebenen Bedingungen erfüllen. | |||
=Eigenschaften einer beta-verteilten Zufallsgröße= | =Eigenschaften einer beta-verteilten Zufallsgröße= | ||
Zeile 16: | Zeile 27: | ||
pdf =<math> | pdf =<math> | ||
f_{X,\alpha,\beta,a,b}(x) = | |||
\begin{cases} | \begin{cases} | ||
\frac{(x-a)^{\alpha -1}(b-x)^{\beta-1}}{\Beta(\alpha,\beta)d^{\alpha+\beta-1}}& \mbox{wenn } a \le x \le b \\ | \frac{(x-a)^{\alpha -1}(b-x)^{\beta-1}}{\Beta(\alpha,\beta)d^{\alpha+\beta-1}}& \mbox{wenn } a \le x \le b \\ |
Version vom 2. Juni 2006, 13:01 Uhr
Definition
Eine stetige Zufallsgröße $ X $ heißt beta-verteilt, wenn ihre Verteilungsfunktion durch die Dichtefunktion
$ f_{X,\alpha,\beta,a,b}= \begin{cases} \frac{(x-a)^{\alpha -1}(b-x)^{\beta-1}}{\Beta(\alpha,\beta)d^{\alpha+\beta-1}}& \mbox{wenn } a \le x \le b \\ 0 & \mbox{sonst } \end{cases} $
beschrieben werden kann. $ \Beta(\alpha,\beta)\! $ ist dabei die Beta-Funktion.
$ \alpha\,\beta,\,a $ und $ b\, $ heißen Parameter der Verteilung. Sie müssen die in der Tabelle angegebenen Bedingungen erfüllen.
Eigenschaften einer beta-verteilten Zufallsgröße
Parameter | $ \alpha \in ]0,\infty[ $ $ \beta \in ]0,\infty[ $ $ a \in ]-\infty,\infty[ $ $ b \in ]-\infty,\infty[,\,b>a $ $ d := b-a\! $ |
Dichtefunktion | $ f_{X,\alpha,\beta,a,b}(x) = \begin{cases} \frac{(x-a)^{\alpha -1}(b-x)^{\beta-1}}{\Beta(\alpha,\beta)d^{\alpha+\beta-1}}& \mbox{wenn } a \le x \le b \\ 0 & \mbox{sonst } \end{cases} $ |
Stetigkeit | $ f_X(x) \mbox{ ist stetig auf }]\infty,\infty[\! $ |
Träger | $ f_X(x) \ne 0 \Leftrightarrow x \in ]a,b[ \! $ |
Modus | $ c := a + d\frac{\alpha -1}{\alpha + \beta -2} = \frac{b(\alpha -1)+ a(\beta-1)}{\alpha+\beta-2} $ $ \operatorname{md}_X = \{c\}, \mbox{ falls } \alpha, \beta \ge 1 \mbox{ und } \alpha\beta > 1\! $ |
Erwartungswert | $ \mu(X) = \frac{b\alpha+ a\beta}{\alpha+\beta} $ |
Varianz | $ \operatorname{Var}(X) = \frac{d^2\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} $ |
Standardabweichung | $ \sigma(X) = \frac{d}{(\alpha+\beta)}\sqrt{\frac{\alpha\beta}{\alpha+\beta+1}} $ |
Die Dichtefunktionen der hier definierten allgemeinen Beta-Verteilungen, können durch einfache Linear-Transformationen aus den Dichtefunktionen der normalisierten Beta-Verteilungen erzeugt werden:
$ f_{X,a,b}(x) = f_{X,0,1}(\frac{x-a}{b-a}) $