Algebraische Struktur

aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg

Definition nach Brockhaus (1986 A-Apt) und Gellert, Kästner (1979)

Ein Tupel $ \mathcal{A} = (A, o_1, ..., o_m) $ heißt algebraische Struktur (kurz Algebra), wenn:

Algebraische Struktur mit partiellen Operationen: Definition nach Kowarschick

Ein Tupel $ \mathcal{A} = (A, o_1, ..., o_m) $ heißt algebraische Struktur (kurz Algebra), wenn:

Bemerkungen

Für alle $ i \in [1..m] $ ist $ o_i\, $ eine (evtl. partielle) Funktion $ o_i: A^{n_i} \rightarrow A\,\,\,(n_i\in \mathbb{N}_0) $.

Die wesentliche Eigenschaft einer algebraischen Operation ist die Abgeschlossenheit: Jede algebraische Operation $ o_i\, $ einer algebraischen Struktur $ \mathcal{A} = (A, o_1, ..., o_m) $ bildet null, ein, zwei oder mehr Elemente der Grundmenge $ A\, $ von $ \mathcal{A}\, $ wieder auf ein Element dieser Grundmenge ab.

Beispiele

  • Die natürlichen Zahlen bilden zusammen mit der Addition und der Multiplikation eine algebraische Struktur: $ (\mathbb{N}, +, \cdot) $.
  • Die natürlichen Zahlen bilden zusammen mit der Addition, der Subtraktion und der Multiplikation eine algebraische Struktur: $ (\mathbb{N}, +, -, \cdot) $. Dabei ist die Subtraktion lediglich eine partielle algebraische Operation.

Verschiedene Typen von algebraischen Strukturen

Quellen


Dieser Artikel ist GlossarWiki-konform.