Dreiecksverteilung: Unterschied zwischen den Versionen

aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg
Zeile 72: Zeile 72:
=Zusammenhang zwischen allgemeiner und ard-Dreiecksverteilung=
=Zusammenhang zwischen allgemeiner und ard-Dreiecksverteilung=


Die [[]Standard-Dreiecksverteilung] hat eine speziellere Dichtefunktion <math>f_{D(c)}\!</math>.
Die [[Standard-Dreiecksverteilung]] hat eine speziellere Dichtefunktion <math>f_{D(c)}\!</math>.
Wie hängen die hier definierte allgemeiner Form und die dort definierte spezieller Form zusammen?
Wie hängen die hier definierte allgemeiner Form und die dort definierte spezieller Form zusammen?


Zunächst sieht man anhand der Definitionen sofort, dass jede Dichtefunktion einer [[Standard-Dreiecks-Verteilung]]
Zunächst sieht man anhand der Definitionen sofort, dass jede Dichtefunktion einer [[Standard-Dreiecksverteilung]]
auch eine Dichtefunktion einer [[Dreiecksverteilung|allgemeinen Dreieckserteilungen]] ist:
auch eine Dichtefunktion einer [[Dreiecksverteilung|allgemeinen Dreiecksverteilungen]] ist:


<math>f_{D(c)}(x) = f_{D(0,1,c}(x) \!</math>  
<math>f_{D(c)}(x) = f_{D(0,1,c}(x) \!</math>  

Version vom 23. November 2007, 14:46 Uhr

Definition

Eine stetige Zufallsgröße $ X = D(a,b,c)\, $ heißt dreiecksverteilt, wenn ihre Verteilungsfunktion durch die Dichtefunktion

$ f_X(x) := \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & \mbox{wenn } a \le x \le c \\ \frac{2(b-x)}{(b-a)(b-c)} & \mbox{wenn } c < x \le b \\ 0 & \mbox{sonst } \end{cases} $

beschrieben werden kann.

$ a \in ]-\infty,\infty[ $, $ b \in ]a,\infty[ $ und $ c \in ]a,b[ $ heißen Parameter der Verteilung.

(vgl. Standard-Dreiecksverteilung)

Eigenschaften einer dreiecksverteilten Zufallsgröße

Parameter
(vgl. Parameter der
standardisierten
Dreiecksverteilung)
$ a \in ]-\infty,\infty[ $
$ b \in ]a,\infty[ $
$ c \in ]a,b[ $

$ d := b-a\! $
$ m := \frac{c-a}{d} \in ]0,1[,\,1-m=\frac{b-c}{d},\,c = a+md = b - (1-m)d $

$ m $ beschreibt den prozentualen Abstand von $ c $ zu $ a $ bzgl. $ b $

$ 1-m $ beschreibt den prozentualen Abstand von $ c $ zu $ b $ bzgl. $ a $
Dichtefunktion
$ f_X(x) := \begin{cases} \frac{2(x-a)}{d(c-a)} = \frac{2(x-a)}{md^2} & \mbox{wenn } a \le x \le c \\ \frac{2(b-x)}{d(b-c)} = \frac{2(b-x)}{(1-m)d^2} & \mbox{wenn } c < x \le b \\ 0 & \mbox{sonst } \end{cases} $
Stetigkeit
$ f_X(x) \mbox{ ist stetig auf }]-\infty,\infty[\! $
Träger
$ f_X(x) \ne 0 \Leftrightarrow x \in ]a,b[ \! $
Verteilungsfunktion
$ F_X(x) = \begin{cases} 0 & \mbox{wenn } x < a\\ 0+\frac{(x-a)^2}{d(c-a)} = 0+\frac{(x-a)^2}{md^2} & \mbox{wenn } a \le x \le c \\ 1-\frac{(b-x)^2}{d(b-c)} = 1-\frac{(b-x)^2}{(1-m)d^2} & \mbox{wenn } c < x \le b \\ 1 & \mbox{wenn } b < x \end{cases} $
Modus
$ \operatorname{md}_X = \{c\} = \{a+md\},\,f_X(c)=\frac{2}{d}\! $
Erwartungswert
$ \mu(X) = \frac{a+b+c}{3} = a+\frac{(1+m)d}{3} $
p-Quantil
$ F_X^{-1}(p) = \begin{cases} a+d\sqrt{mp} & \mbox{wenn } 0 \le p \le m \\ b-d\sqrt{(1-m)(1-p)} & \mbox{wenn } m < p \le 1 \end{cases} $
Median
$ F_X^{-1}(0,5) = \begin{cases} a+\frac{\sqrt{2d(c-a)}}{2} = a+d\frac{\sqrt{2m}}{2} & \mbox{wenn } 0{,}5 < m \mbox{ bzw. } \frac{b+a}{2} < c\\ a+\frac{d}{2} = b-\frac{d}{2} & \mbox{wenn } m = 0{,}5 \mbox{ bzw. } c = \frac{b+a}{2}\\ b-\frac{\sqrt{2d(b-c)}}{2} = b-d\frac{\sqrt{2(1-m)}}{2} & \mbox{wenn } m < 0{,}5 \mbox{ bzw. } c \le \frac{b+a}{2} \end{cases} $
Varianz
$ \operatorname{Var}(X) = \frac{a^2+b^2+c^2-ab-ac-bc}{18} = \frac{d^2(1-m+m^2)}{18} $
Standardabweichung
$ \sigma(X) = \frac{1}{6} \sqrt{2(a^2+b^2+c^2-ab-ac-bc)} = \frac{d}{6} \sqrt{2(1-m+m^2)} $

Zusammenhang zwischen allgemeiner und ard-Dreiecksverteilung

Die Standard-Dreiecksverteilung hat eine speziellere Dichtefunktion $ f_{D(c)}\! $. Wie hängen die hier definierte allgemeiner Form und die dort definierte spezieller Form zusammen?

Zunächst sieht man anhand der Definitionen sofort, dass jede Dichtefunktion einer Standard-Dreiecksverteilung auch eine Dichtefunktion einer allgemeinen Dreiecksverteilungen ist:

$ f_{D(c)}(x) = f_{D(0,1,c}(x) \! $

Umgekehrt können alle Dichtefunktionen von allgemeinen Dreiecksverteilungen durch Linear-Transformationen aus entsprechenden Dichtefunktionen der Standard-Dreieckserteilungen erzeugt werden:

$ f_{D(a,b,c)}(x) = \frac{1}{b-a}\cdot f_{D(c}\left(\frac{x-a}{b-a}\right) $

(Beweis der zweiten Aussage)

Quellen


Dieser Artikel ist GlossarWiki-konform.
In diesem Artikel sollten die Quellenangaben überarbeitet werden.
Bitte die Regeln der GlossarWiki-Quellenformatierung beachten.