Algebraische Struktur: Unterschied zwischen den Versionen
Kowa (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
Kowa (Diskussion | Beiträge) |
||
Zeile 15: | Zeile 15: | ||
* <math>A</math> ist eine [[Menge]] oder [[Klasse (Mengenlehre)|Klasse]], die so genannte [[Trägermenge]] | * <math>A</math> ist eine [[Menge]] oder [[Klasse (Mengenlehre)|Klasse]], die so genannte [[Trägermenge]] | ||
* <math>I</math> ist eine nicht-leere Indexmenge | * <math>I</math> ist eine nicht-leere Indexmenge | ||
* <math>(o_i)_{i \in I}</math> ist eine [[Familie]] von | * <math>(o_i)_{i \in I}</math> ist eine [[Familie]] von [[algebraische Operation|Deskriptoren algebraischer Operationen]] mit <math>o_i = (f_i, A, n_i, B_i)</math> für alle <math>i \in I</math>. | ||
Die Funktionen <math>f_i</math> der algebraischen Struktur sind also <math>n_i</math>-stellige algebraische Operationen über der Tägermenge <math>A</math> mit dem Operationsbereich <math>B_i</math>: | Die Funktionen <math>f_i</math> der algebraischen Struktur sind also <math>n_i</math>-stellige [[algebraische Operation|algebraischer Operationen]] über der Tägermenge <math>A</math> mit dem Operationsbereich <math>B_i</math>: | ||
<div class="formula"><math>\begin{tabular}{lll} | <div class="formula"><math>\begin{tabular}{lll} | ||
$f_i: A^{n_i} \rightarrow A,$ & $\text{falls }B_i = \emptyset$ \\ | $f_i: A^{n_i} \rightarrow A,$ & $\text{falls }B_i = \emptyset$ \\ |
Version vom 8. August 2012, 12:17 Uhr
Dieser Artikel wird derzeit von einem Autor gründlich bearbeitet. Die Inhalte sind daher evtl. noch inkonsistent.
Dieser Artikel erfüllt die GlossarWiki-Qualitätsanforderungen nur teilweise:
Korrektheit: 3 (zu größeren Teilen überprüft) |
Umfang: 3 (einige wichtige Fakten fehlen) |
Quellenangaben: 3 (wichtige Quellen vorhanden) |
Quellenarten: 5 (ausgezeichnet) |
Konformität: 5 (ausgezeichnet) |
Definition: Algebraische Struktur
Ein Paar $ \mathcal{A} = (A, (o_i)_{i \in I}) $ heißt Algebraische Struktur oder Universelle Algebra, wenn:
- $ A $ ist eine Menge oder Klasse, die so genannte Trägermenge
- $ I $ ist eine nicht-leere Indexmenge
- $ (o_i)_{i \in I} $ ist eine Familie von Deskriptoren algebraischer Operationen mit $ o_i = (f_i, A, n_i, B_i) $ für alle $ i \in I $.
Die Funktionen $ f_i $ der algebraischen Struktur sind also $ n_i $-stellige algebraischer Operationen über der Tägermenge $ A $ mit dem Operationsbereich $ B_i $:
Bemerkungen
An Stelle von Algebraische Struktur sagt man häufig kurz Algebra.
Gellert, Kästner (1979) merken an, dass bei der Definition des Begriffs Algebraische Struktur partielle algebraische Operationen zugelassen sein können. Aus diesem Grund wurde zuvor zusätzlich der Begriff Algebraische Struktur mit partiellen Operationen definiert.[1]
Asser (1980) fordert, dass eine Algebraische Struktur auch Konstanten ($ \in A $) und Relationen über $ A $ (d.h. Teilmengen von $ A^n $, wobei $ n \in \mathbb{N} $) enthalten darf.[2] Dies sind allerdings keine echten Erweiterungen der obigen Definitionen, da Funktionen $ f: A^0 \rightarrow A $ als Konstanten aufgefasst werden können und auch Relationen durch Funktionen
oder partielle Funktionen
nachgebildet werden können.
Meyberg (1980) dagegen definiert Algebraische Strukturen allgemeiner. Neben den von ihm so genannten „inneren Verknüpfungen“, d.h. neben denjenigen Funktionen, die Elemente der Grundmenge $ A $ auf Elemente der Grundmenge $ A $ abbildden, lässt er auch „äußere Verknüpfungen“ zu. Darunter versteht er Funktionen der Art:
Aus diesem Grund wurde zuvor zusätzlich der Begriff Algebraische Struktur mit partiellen inneren und äußeren Operationen definiert. Allerdings lässt Meyberg nur zweistellige Funktionen in seiner Definition zu, d.h. bei „inneren Verknüpfungen“ muss $ n=2 $ gelten und bei äußeren $ m=n=1 $.[3]
Beispiele
- Die natürlichen Zahlen bilden zusammen mit der Addition und der Multiplikation eine algebraische Struktur: $ (\mathbb{N}, +, \cdot) $.
- Die natürlichen Zahlen bilden zusammen mit der Addition, der Subtraktion und der Multiplikation keine algebraische Struktur, sondern nur eine algebraische Struktur mit einer partiellen Operation: $ (\mathbb{N}, +, -, \cdot) $, da die Subtraktion ist lediglich eine partielle algebraische Operation ist.
Verschiedene Typen von algebraischen Strukturen
- Magma
- Halbring
- Verband
- Hyperkomplexes System = Algebra über einen Ring (oft auch nur: Algebra)
- Relationale Algebra
Quellen
- ↑
- ↑ Asser (1980): Günter Asser; Grundbegriffe der Mathematik – I. Mengen. Abbildungen. Natürliche Zahlen; Auflage: 4; Verlag: VEB Deutscher Verlag der Wissenschaften; Adresse: Berlin; 1980; Quellengüte: 5 (Buch)
- ↑ Meyberg (1980): Kurt Meyberg; Algebra – Teil 1; Auflage: 2; Verlag: Carl Hanser Verlag; Adresse: München, Wien; 1980; Quellengüte: 5 (Buch)
- Brockhaus (1986, A-APT): Brockhaus-Enzyklopädie: Band 1, A-APT; Auflage: 19; Verlag: F.A. Brockhaus GmbH; Adresse: Mannheim; ISBN: 3-7653-1101-4; 1986; Quellengüte: 5 (Buch)