Ergebnisraum: Unterschied zwischen den Versionen
aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg
Kowa (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
Kowa (Diskussion | Beiträge) |
||
Zeile 23: | Zeile 23: | ||
*{{Quelle|Papula, L. (2001): Mathematik für Ingenieure}} | *{{Quelle|Papula, L. (2001): Mathematik für Ingenieure}} | ||
=Siehe auch== | ==Siehe auch== | ||
*[[Wikipedia:Ergebnismenge]] | *[[Wikipedia:Ergebnismenge]] | ||
[[Kategorie:Zufallsexperiment]] | [[Kategorie:Zufallsexperiment]] |
Version vom 20. Mai 2019, 11:06 Uhr
Dieser Artikel erfüllt die GlossarWiki-Qualitätsanforderungen nur teilweise:
Korrektheit: 4 (großteils überprüft) |
Umfang: 2 (wichtige Fakten fehlen) |
Quellenangaben: 3 (wichtige Quellen vorhanden) |
Quellenarten: 5 (ausgezeichnet) |
Konformität: 5 (ausgezeichnet) |
Definition
Die Menge aller sich gegenseitig ausschließenden Ergebnisse einen Zufallsexperiments heißt Ergebnismenge $ \Omega\, $.
Bemerkungen
$ \Omega\, $ kann endlich viele, abzählbar viele, aber auch überabzählbar viele Elemente enthalten.
Ein Element der Ergebnismenge heißt Elementarereignis. Eine Teilmenge der Ergebnismenge heißt Zufallsereignis oder kurz Ereignis.
Quelle
- Papula (2001): Lothar Papula; Mathematik für Ingenieure und Naturwissenschaftler – Vektoranalysis, Wahrscheinlichkeitsrechnung, Mathematische Statistik, Fehler- und Ausgleichrechnung; Band: 3; Auflage: 4; Verlag: Friedrich Vieweg & Sohn Verlagsgesellschaft mbH; Adresse: Braunschweig/Wiesbaden; ISBN: 3528349379; 2001; Quellengüte: 5 (Buch)