Beta-Verteilung
Dieser Artikel erfüllt die GlossarWiki-Qualitätsanforderungen nur teilweise:
Korrektheit: 5 (vollständig überprüft) |
Umfang: 3 (einige wichtige Fakten fehlen) |
Quellenangaben: 4 (fast vollständig vorhanden) |
Quellenarten: 5 (ausgezeichnet) |
Konformität: 4 (sehr gut) |
Definition
Eine stetige Zufallsgröße $ X = \Beta V(\alpha,\beta,a,b)\; $ heißt beta-verteilt, wenn ihre Verteilungsfunktion durch die Dichtefunktion
$f_X(x) = f_{\Beta V(\alpha,\beta,a,b)}(x) :=
\begin{cases} \frac{(x-a)^{\alpha -1}\cdot (b-x)^{\beta-1}}{\Beta(\alpha,\beta)\cdot (b-a)^{\alpha+\beta-1}}& \mbox{wenn } a \le x \le b \\ 0 & \mbox{sonst } \end{cases}
$
beschrieben werden kann. $ \Beta(\alpha,\beta)\! $ ist dabei die Beta-Funktion.
$ \alpha,\,\beta,\,a $ und $ b\, $ heißen Parameter der Verteilung. Sie müssen die in der Tabelle angegebenen Bedingungen erfüllen.
Eigenschaften einer beta-verteilten Zufallsgröße
Parameter (vgl. Parameter der standardisierten Beta-Verteilung ) | $ \alpha \in ]0,\infty[ $ $ \beta \in ]0,\infty[ $ $ a \in ]-\infty,\infty[ $ $ b \in ]-\infty,\infty[,\,b>a $ $ d := b-a > 0\! $ |
Dichtefunktion | $ f_{X,\alpha,\beta,a,b}(x) = \begin{cases} \frac{{(x-a)}^{\alpha -1}\cdot {(b-x)}^{\beta-1}}{{\Beta(\alpha,\beta)}\cdot d^{\alpha+\beta-1}}& \mbox{wenn } a \le x \le b \\ 0 & \mbox{sonst } \end{cases} $ |
Stetigkeit | $ f_X(x) \mbox{ ist stetig auf }]-\infty,\infty[\! $ |
Träger | $ f_X(x) \ne 0 \Leftrightarrow x \in ]a,b[ \! $ |
Verteilungsfunktion | $ F_X(x) =\int_{-\infty}^x \! f_X(t) \, \mathrm{d} t $ ist nicht elementar darstellbar |
Modus | $ c := a + d\frac{\alpha -1}{\alpha + \beta -2} = \frac{b(\alpha -1)+ a(\beta-1)}{\alpha+\beta-2} $ $ \operatorname{md}_X = \{c\}, \mbox{ falls } \alpha, \beta \ge 1 \mbox{ und } \alpha\beta > 1\! $ |
Erwartungswert | $ \mu(X) = \frac{b\alpha+ a\beta}{\alpha+\beta} $ |
Varianz | $ \operatorname{Var}(X) = \frac{d^2\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} $ |
Standardabweichung | $ \sigma(X) = \frac{d}{(\alpha+\beta)} \sqrt{{\frac{\alpha\beta}{\alpha+\beta+1}}} $ |
Zusammenhang zwischen allgemeiner und standardisierter Beta-Verteilung
In Beta-Verteilung (standardisiert) wird eine speziellere Dichtefunktion $ f_{\Beta V(\alpha,\beta)}\! $ definiert. Wie hängen die hier definierte allgemeine Form und die dort definierte spezielle Form zusammen?
Zunächst sieht man anhand der Definitionen sofort, dass jede Dichtefunktion einer standardisierten Beta-Verteilungen auch eine Dichtefunktion einer allgemeinen Beta-Verteilungen ist:
Umgekehrt können alle Dichtefunktionen allgemeinen Beta-Verteilungen durch Linear-Transformationen aus entsprechenden Dichtefunktionen der standardisierten Beta-Verteilungen erzeugt werden:
$ f_{\Beta V(\alpha,\beta,a,b)}(x)
= \frac{1}{b-a}\cdot f_{\Beta V(\alpha,\beta)}\left(\frac{x-a}{b-a}\right) = \frac{1}{d}\cdot f_{\Beta V(\alpha,\beta)}\left(\frac{x-a}{d}\right)$
Und damit gilt auch die Beziehung:
$ F_{\Beta V(\alpha,\beta,a,b)}(x)
= F_{\Beta V(\alpha,\beta)}\left(\frac{x-a}{b-a}\right) = F_{\Beta V(\alpha,\beta)}\left(\frac{x-a}{d}\right)$
Quellen
- Kowarschick (PM): Wolfgang Kowarschick; Vorlesung „Projektmanagement“; Hochschule: Hochschule Augsburg; Adresse: Augsburg; Web-Link; 2014; Quellengüte: 3 (Vorlesung)
- Rinne (2003): Horst Rinne; Taschenbuch der Statistik; Auflage: 3; Verlag: Wissenschaftlicher Verlag Harri Deutsch; Adresse: Frankfurt am Main; ISBN: 3817116950; 2003; Quellengüte: 5 (Buch)
- WikipediaEn: Beta distribution
- Statwiki HU Berlin: Beta-Verteilung