Dreiecksverteilung: Unterschied zwischen den Versionen

aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 19: Zeile 19:
   </math>
   </math>


beschrieben werden kann. <math>\scripttext{a \in ]-\infty,\infty[}</math>, <math>\scripttext{b \in ]a,\infty[}</math> und <math>\scripttext{c \in ]a,b[}</math> heißen Parameter der Verteilung.
beschrieben werden kann. <math>\scriptstyle{a \in ]-\infty,\infty[}</math>, <math>\scriptstyle{b \in ]a,\infty[}</math> und <math>\scriptstyle{c \in ]a,b[}</math> heißen Parameter der Verteilung.


(vgl. [[Standard-Dreiecksverteilung]])
(vgl. [[Standard-Dreiecksverteilung]])
Zeile 77: Zeile 77:
=Zusammenhang zwischen allgemeiner und Standard-Dreiecksverteilung=
=Zusammenhang zwischen allgemeiner und Standard-Dreiecksverteilung=


Die [[Standard-Dreiecksverteilung]] hat eine speziellere Dichtefunktion <math>\scripttext{f_{D(c)}}</math>.
Die [[Standard-Dreiecksverteilung]] hat eine speziellere Dichtefunktion <math>\scriptstyle{f_{D(c)}}</math>.
Wie hängen die hier definierte allgemeine Form und die dort definierte spezielle Form zusammen?
Wie hängen die hier definierte allgemeine Form und die dort definierte spezielle Form zusammen?



Version vom 9. September 2012, 11:35 Uhr

Dieser Artikel erfüllt die GlossarWiki-Qualitätsanforderungen nur teilweise:

Korrektheit: 5
(vollständig überprüft)
Umfang: 3
(einige wichtige Fakten fehlen)
Quellenangaben: 4
(fast vollständig vorhanden)
Quellenarten: 5
(ausgezeichnet)
Konformität: 4
(sehr gut)

Definition

Eine stetige Zufallsgröße $ X = D(a,b,c)\, $ heißt dreiecksverteilt, wenn ihre Verteilungsfunktion durch die Dichtefunktion

$ f_X(x) = f_{D(a,b,c)}(x) := \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & \mbox{wenn } a \le x \le c \\ \frac{2(b-x)}{(b-a)(b-c)} & \mbox{wenn } c < x \le b \\ 0 & \mbox{sonst } \end{cases} $

beschrieben werden kann. $ \scriptstyle{a \in ]-\infty,\infty[} $, $ \scriptstyle{b \in ]a,\infty[} $ und $ \scriptstyle{c \in ]a,b[} $ heißen Parameter der Verteilung.

(vgl. Standard-Dreiecksverteilung)

Eigenschaften einer dreiecksverteilten Zufallsgröße

Parameter
(vgl. Parameter der
standardisierten
Dreiecksverteilung)
$ a \in ]-\infty,\infty[ $
$ b \in ]a,\infty[ $
$ c \in ]a,b[ $

$ d := b-a\! $
$ m := \frac{c-a}{b-a} \in ]0,1[,\,1-m=\frac{b-c}{b-a},\,c = a+md = b - (1-m)d $

$ m $ beschreibt den prozentualen Abstand von $ c $ zu $ a $ bzgl. $ b $

$ 1-m $ beschreibt den prozentualen Abstand von $ c $ zu $ b $ bzgl. $ a $
Dichtefunktion
$ f_X(x) := \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} = \frac{2(x-a)}{md^2} & \mbox{wenn } a \le x \le c \\ \frac{2(b-x)}{(b-a)(b-c)} = \frac{2(b-x)}{(1-m)d^2} & \mbox{wenn } c < x \le b \\ 0 & \mbox{sonst } \end{cases} $
Stetigkeit
$ f_X(x) \mbox{ ist stetig auf }]-\infty,\infty[\! $
Träger
$ f_X(x) \ne 0 \Leftrightarrow x \in ]a,b[ \! $
Verteilungsfunktion
$ F_X(x) = \begin{cases} 0 & \mbox{wenn } x < a\\ 0+\frac{(x-a)^2}{(b-a)(c-a)} = 0+\frac{(x-a)^2}{md^2} & \mbox{wenn } a \le x \le c \\ 1-\frac{(b-x)^2}{(b-a)(b-c)} = 1-\frac{(b-x)^2}{(1-m)d^2} & \mbox{wenn } c < x \le b \\ 1 & \mbox{wenn } b < x \end{cases} $
Modus
$ \operatorname{md}_X = \{c\} = \{a+md\},\,f_X(c)=\frac{2}{b-a}=\frac{2}{d}\! $
Erwartungswert
$ \mu(X) = \frac{a+b+c}{3} = a+\frac{(1+m)d}{3} $
p-Quantil
$ F_X^{-1}(p) = \begin{cases} a+d\sqrt{mp} & \mbox{wenn } 0 \le p \le m \\ b-d\sqrt{(1-m)(1-p)} & \mbox{wenn } m < p \le 1 \end{cases} $
Median
$ F_X^{-1}(0,5) = \begin{cases} a+\frac{\sqrt{2d(c-a)}}{2} = a+d\frac{\sqrt{2m}}{2} & \mbox{wenn } 0{,}5 < m \mbox{ bzw. } \frac{b+a}{2} < c\\ a+\frac{d}{2} = b-\frac{d}{2} & \mbox{wenn } m = 0{,}5 \mbox{ bzw. } c = \frac{b+a}{2}\\ b-\frac{\sqrt{2d(b-c)}}{2} = b-d\frac{\sqrt{2(1-m)}}{2} & \mbox{wenn } m < 0{,}5 \mbox{ bzw. } c \le \frac{b+a}{2} \end{cases} $
Varianz
$ \operatorname{Var}(X) = \frac{a^2+b^2+c^2-ab-ac-bc}{18} = \frac{d^2(1-m+m^2)}{18} $
Standardabweichung
$ \sigma(X) = \frac{1}{6} \sqrt{2(a^2+b^2+c^2-ab-ac-bc)} = \frac{d}{6} \sqrt{2(1-m+m^2)} $

Zusammenhang zwischen allgemeiner und Standard-Dreiecksverteilung

Die Standard-Dreiecksverteilung hat eine speziellere Dichtefunktion $ \scriptstyle{f_{D(c)}} $. Wie hängen die hier definierte allgemeine Form und die dort definierte spezielle Form zusammen?

Zunächst sieht man anhand der Definitionen sofort, dass jede Dichtefunktion einer Standard-Dreiecksverteilung auch eine Dichtefunktion einer allgemeinen Dreiecksverteilungen ist:

$ f_{D(c)}(x) = f_{D(0,1,c)}(x) $

Umgekehrt können alle Dichtefunktionen von allgemeinen Dreiecksverteilungen durch Linear-Transformationen aus entsprechenden Dichtefunktionen der Standard-Dreiecksverteilungen erzeugt werden:

$ f_{D(a,b,c)}(x) = \frac{1}{b-a}\cdot f_{D((c-a)/(b-a))}\left(\frac{x-a}{b-a}\right) = \frac{1}{d}\cdot f_{D(m)}\left(\frac{x-a}{d}\right) $

(Beweis der zweiten Aussage)

Quellen

  1. Kowarschick (PM): Wolfgang Kowarschick; Vorlesung „Projektmanagement“; Hochschule: Hochschule Augsburg; Adresse: Augsburg; Web-Link; 2014; Quellengüte: 3 (Vorlesung)
  2. Rinne (2003): Horst Rinne; Taschenbuch der Statistik; Auflage: 3; Verlag: Wissenschaftlicher Verlag Harri Deutsch; Adresse: Frankfurt am Main; ISBN: 3817116950; 2003; Quellengüte: 5 (Buch)
  3. WikipediaEn: Triangular distribution
  4. Statwiki HU Berlin: Dreiecksverteilung

Siehe auch