Aussage (Logik)

aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg
(Weitergeleitet von Aussage)
Wechseln zu:Navigation, Suche
Dieser Artikel erfüllt die GlossarWiki-Qualitätsanforderungen:
  ★★★★☆ Korrektheit: großteils überprüft
  ★★★★☆ Umfang: einige unwichtige Fakten sollten ergänzt werden
  ★★★★★ Quellenangaben: vollständig vorhanden
  ★★★★★ Quellenqualität: ausgezeichnet
  ★★★★★ GlossarWiki-Konformität: ausgezeichnet

1 Definition (Aristoteles (384-322 v. Chr.))

Πρότασις μὲν οὖν ἐστὶ λόγος καταφατικὸς ἢ ἀποφατικός τινος κατά τινος·[1]
(Protasis men oun esti logos kataphatikos ē apophatikos tinos kata tinos.)

Ein Satz ist nun eine Aussage, welche etwas von einem Anderen bejaht oder verneint.[2]

A premiss then is a sentence affirming or denying one thing of another.[3]

Eine Aussage ist ein sprachliches Gebilde, von dem es sinnvoll ist zu sagen, ob es wahr sei oder falsch.[4]

1.1 Anmerkung

Die Begriffe "wahr" und "falsch" werden Wahrheitswerte genannt.

2 Definition (Bronstein, Semendjajew (1979))[5]

Unter einer Aussage versteht man ein sinnvolles sprachliches Gebilde, das die Eigenschaft hat, entweder wahr oder falsch zu sein (Prinzip vom ausgeschlossenen Dritten).

3 Definition (Brockhaus (1987))[6]

Aussage

allg.: Bericht, zu einem Tatbestand abgegebene Erklärung; auch: geistiger Gehalt, z.B. eines Kustwerkes

Logik: Die Formulierung eines Sachverhalts in Form eines Behauptungssatzes; bei Aristoteles Apophansis (Satz, der wahr oder falsch sein kann) genannt.

4 Definition (Mathematische Logik)

Der Begriff Aussage wird in mehreren Teilgebieten der Mathematischen Logik formalisiert:

Anstelle von Aussagen spricht man hier allerdings i. Allg. von (aussagelogischen bzw. prädikatenlogischen) Ausdrücken oder auch Formeln, um den formalen Charakter dieser Definitionen zu betonen.

5 Bemerkungen

Sowohl die Definition von Aristoteles, als auch die Definition von Bronstein/Semendjajew und Brockhaus definieren den Begriff „Aussage“ (im Sinne der Logik) nicht wirklich.

Bei Aristoteles ist der Begriff „sprachliches Gebilde“ („Satz“) ziemlich vage und auch der Wahrheitsbegriff ist undefiniert. Beides wird als bekannt und in irgendeinem Sinn „einfacher“ als der Begriff „Aussage“ vorausgesetzt. Allerdings sind beide Begriffe zu unspezifisch, als dass sie den Begriff „Aussage“ stringent definieren würden.

Die Definition von Bronstein/Semendjajew entspricht im wesentlichen der Definition von Aristoteles.

Die Definition von Brockhaus ist noch unbefriedigender, da der Begriff „Behauptungssatz“ genausowenig definiert ist, wie „Aussage“ selbst.

Aus der Definition von Aristoteles lassen sich allerdings einige wichtige Eigenschaften von Aussagen ablesen (vgl. Güntzer et al.[7]):

  • Man benötigt einen Wahrheitsbegriff.
  • Man benötigt „Sätze“ bzw. „sprachliche Gebilde“.
  • Nur bestimmte „Sätze“ bzw. „sprachliche Gebilde“, nämlich die „Aussagen“, können als „wahr“ oder „falsch“ angesehen werden.

5.1 Wahrheitsbegriff

(Vgl. Güntzer et al.[7])

Aus den obigen Deiniftionen lassen sich zwei Schlüsse über den Wahrheitsbegriff ziehen:

  1. Tertium no datur (ein Drittes ist nicht gegeben): Eine Aussage ist wahr oder falsch, nichts sonst.
  2. Ausgeschlossener Widerspruch: Eine Aussage ist nicht gleichzeitig wahr und falsch.

Die erste Aussage ist nicht so evident, wie es den Anschein hat. Im Alltag begegnen uns oft Halbwahrheiten oder Flaschaussagen, die zumindest gut begründet sind. Und auch die Mathematik befasst sich mit mehrwertigen Logiken, bei denen mehr als zwei Wahrheitswerte zugelassen werden, wie z.B. „wahr“, „falsch“ und „unbekannt“ (vgl. Junktoren der dreiwertigen Logik, SQL, Fuzzy Logic).

Die zweite Folgerung steht nur implizit in der Definition von Aritsoteles: Man muss „oder“ als „entweder — oder“ interpretieren. Bronstein und Semendjajew formulieren diesen Sachverhalt stringenter.

5.2 Sprachliche Gebilde, Satz

(Vgl. Güntzer et al.[7])

Ein „sprachliches Gebilde“ (Satz) ist ein

  • Gebilde der gesprochenen Sprache (z.B. Lautfolgen)
  • Gebilde der geschriebenen Sprache (z.B. Zeichenfolgen, Texte, mathematische Formeln, Programme, Notenstücke)

Viele sprachlichen Gebilde sind sinnlos, wie z.B. „sdf§$%s12fn sd“ oder ein Programm mit Syntaxfehlern.

Aber auch sinnvolle Gebilde, d.h. Gebilde, denen ein Inhalt (eine Semantik) zugeordnet werden kann, sind nicht immer Aussagen:

  1. Komm her! (Aufforderung, Befehl)
  2. a²+b² (Term)
  3. Nachts ist es kälter als draußen. (Korrekt gebildeter Satz ohne sinnvollen Inhalt)
  4. Diser Saz enthält drei Fehler. (Korrekt gebildeter Satz, der weder wahr noch falsch ist.)
  5. a²+b² = c²

Die ersten beiden Gebilde sind schon aus rein syntaktischen Gründen keine Aussagen: Ein Ausrufezeichen steht nie nach einer Aussage, ein mathematischer Term ohne Prädikat ist nicht wahr oder falsch. Typische Prädikate sind die Gleichheit (=) oder Größenbeziehungen (<, > etc.).

Das dritte Gebilde ist aus semantischen Gründen keine Aussage. Man muss den Inhalt/die Bedeutung des Satzes verstehen, um entscheiden zu können, dass es sich hierbei um keine Aussage handelt.

Das vierte Gebilde sieht aus wie eine Aussage, hat auch einen Inhalt, ist aber trotzdem keine Aussage, da der Satz weder wahr noch falsch ist: Er enthält nur zwei (Rechtschreib)-Fehler, also ist er falsch. Da dies der dritte Fehler ist, ist er doch richtig. Und damit ist er wieder falsch. Etc. pp. Das Problem dieses Satzes ist, dass die Sprachebenen vermischt werden: Er spricht über Sätze und zwar über sich selbst. Eine formale Definition des Aussagebegriffs muss daher zwischen Objektsprache, Metasprache, Metametasprache etc. sauber unterscheiden.

Das fünfte Gebilde ist nur dann eine Aussage, wenn man weiß, für welche Werte die Variablen a, b und c stehen. Solange diese Werte jedoch nicht festgelegt worden sind (z.B. durch die Voraussetzung, dass c die Länge der Hypothenuse eines bestimmten rechtwinkligen Dreiecks ist und a und b die Längen der Katheten dieses Dreickes sind), handelt es sich nicht um eine Aussage, sondern nur um ein „Aussagenschema“. Erst wenn man die „freien Variablen“ a, b und c an spezielle Werte „bindet“, entsteht eine Aussage. So ist die zugehörige Aussage beispielsweise für a=1, b=2 und c=3 falsch, aber für a=3, b=4 und c=5 richtig.

Es gibt auch Aussagen, deren Wahrheitswert zwar eindeutig, aber unbekannt ist:

  1. Jede gerade Zahl größer als 2 ist als Summe zweier Primzahlen darstellbar. (Goldbachsche Vermutung)
  2. William Herbert Wallace ist nicht der Mörder von Julia Wallace.[8][9]

Dass der Wahrheitswert einer Aussage effektiv ermittelt werden kann, wurde von Aristoteles in seiner Definition jedoch auch nicht gefordert.

5.3 Syntax, Semantik, Pragmatik

Bei jedem sprachlichen Gebilde kann man drei Aspekte unterscheiden[10][7]:

  • Syntax (Form, Aufbau des Gebildes)
  • Semantik (Inhalt, Bedeutung des Gebildes)
  • Pragmatik (Bedeutungsschwere des Inhalts)

Beispiel

  • Das Lagerfeuer brennt.
  • Das Haus brennt.

Syntaktisch und semantisch sind beide Aussagen gleichartig, aber hinsichtlich der Pragmatik unterscheiden sie sich:

  • Syntax (Form): Artikel, Subjekt, Prädikat
  • Semantik (Bedeutung): Aussagesatz; ein Gegenstand wird dem chemischen Prozess einer Redoxreaktion mit Sauerstoff unter Abgabe von Wärme und Licht unterzogen.
  • Pragmatik (Wichtigkeit, Bedeutungsschwere): Im ersten Fall: „Prima, wir können uns wärmen.“, im zweiten Fall: „Katastophe! Wir müssen die Feuerwehr rufen!“ (sofern die Aussagen wahr sind!).

In der mathematischen Logik werden i. Allg. nur Syntax und Semantik mit formalen Mitteln behandelt, die Pragmatik entzieht sich dagegen weitestgehend mathematischen Mitteln.[7]

6 Quellen

  1. Aristoteles (350 BC): Aristoteles; Analytica priora; Web-Link 0, Web-Link 1; 350 BC; Quellengüte: 5 (Buch), Biblion A, 1-10, 24a, (16)
  2. Kirchmann (1887): Julius Hermann von Kirchmann; Aristoteles' Erste Analytiken oder Lehre vom Schluss; Reihe: Philosophische Bibliothek; Band: 10; Verlag: Dürrsche Buchhandlung; Adresse: Leipzig; Web-Link; 1887; Quellengüte: 5 (Buch), 1. Buch, 1. Kapitel, http://www.zeno.org/nid/20009146024
  3. Jenkinson (1928): Arthur J.J. Jenkinson; Aristotle: Prior Analytics – Translated by A. J. Jenkinson; in: The Works of Aristotle translated into English; Verlag: Clarendon Press; Adresse: Oxford; Web-Link; 1928; Quellengüte: 5 (Buchartikel), http://ebooks.adelaide.edu.au/a/aristotle/a8pra/book1.html#book1
  4. Güntzer, Schmidt, Kempf, Möller (1989): Ulrich Güntzer, Gunther Schmidt, Michael Kempf und Bernhard Möller; Mathematische Logik; Band: TUM-I-8900; Hochschule: Technische Universität München; 1989; Quellengüte: 4 (Skript)
  5. Bronstein, Semendjajew (1979): I. N. Bronstein und K. A. Semendjajew; Taschenbuch der Mathematik; Hrsg.: G. Grosche und V. Ziegler; Auflage: 19; Verlag: BSB B. G. Teubner Verlagsgesellschaft und Nauka-Verlag; Adresse: Leipzig, Moskau; ISBN: 3871444928; 1979; Quellengüte: 5 (Buch), Seite 588
  6. Brockhaus (1987, APU-BEC): Brockhaus-Enzyklopädie: Band 2, APU-BEC; Auflage: 19; Verlag: F.A. Brockhaus GmbH; Adresse: Mannheim; ISBN: 3-7653-1102-2; 1987; Quellengüte: 5 (Buch)
  7. 7,0 7,1 7,2 7,3 7,4 vgl. Güntzer, Schmidt, Kempf, Möller (1989): Ulrich Güntzer, Gunther Schmidt, Michael Kempf und Bernhard Möller; Mathematische Logik; Band: TUM-I-8900; Hochschule: Technische Universität München; 1989; Quellengüte: 4 (Skript)
  8. vgl. Schmidt (1966): Jürgen Schmidt; Mengenlehre – Grundbegriffe; Reihe: B.I.Hochschultaschenbücher; Band: 1; Nummer: 56; Verlag: Bibliographisches Institut AG; Adresse: Mannheim; ISBN: B0000BUJC6; 1966; Quellengüte: 5 (Buch)
  9. vgl. WikipediaEN:William Herbert Wallace: Wikipedia-Autoren; Wikipedia, die freie Enzyklopädie – William Herbert Wallace; Organisation: Wikimedia Foundation Inc.; Adresse: San Francisco; http://en.wikipedia.org/w/index.php?title=William_Herbert_Wallace&oldid=508775521; 2012; Quellengüte: 5 (Web)
  10. Morris (1938): Charles W. Morris; Foundations of the Theory of Signs; Verlag: University of Chicago Press; Adresse: Chicago; ISBN: 978-0226575773; 1938; Quellengüte: 5 (Buch)

7 Siehe auch

  1. Kirchmann (1887c): Julius Hermann von Kirchmann; Aristoteles' Kategorien oder Hermeneutica oder Lehre vom Urtheil; Reihe: Philosophische Bibliothek; Band: 9; Verlag: Dürrsche Buchhandlung; Adresse: Leipzig; Web-Link; 1887; Quellengüte: 5 (Buch), 4. Kapitel
  2. Kirchmann (1887c): Julius Hermann von Kirchmann; Aristoteles' Kategorien oder Hermeneutica oder Lehre vom Urtheil; Reihe: Philosophische Bibliothek; Band: 9; Verlag: Dürrsche Buchhandlung; Adresse: Leipzig; Web-Link; 1887; Quellengüte: 5 (Buch), 5. Kapitel