Menge (Mengenlehre)

aus GlossarWiki, der Glossar-Datenbank der Fachhochschule Augsburg

Dieser Artikel erfüllt die GlossarWiki-Qualitätsanforderungen:

Korrektheit: 4
(großteils überprüft)
Umfang: 4
(unwichtige Fakten fehlen)
Quellenangaben: 5
(vollständig vorhanden)
Quellenarten: 5
(ausgezeichnet)
Konformität: 5
(ausgezeichnet)

Definition (Bolzano, ca. 1840)[1]

Inbegriffe nun, bey welchen auf die Art, wie ihre Theile mit einander verbunden sind, gar nicht geachtet werden soll, an denen somit Alles, was wir an ihnen unterscheiden, bestimmt ist, sobald nur ihre Theile <selbst> bestimmt sind, verdienen es eben um dieser Beschaffenheit willen, mit einem eigenen Nahmen bezeichnet zu werden. In Ermangelung eines andern tauglichen Wortes erlaube ich mir das Wort Menge zu diesem Zwecke zu brauchen; da es von Mengen abgeleitet wird, auch im gemeinen Leben nur zur Bezeichnung solcher Inbegriffe, bey denen man keine Ordnung der Theile beachtet, angewandt wird, ...

Anmerkungen

Der Begriff Menge als Zusammenfassung von Theilen geht gemäß dieser Definition auf Bernard Bolzano zurück. Bolzano betont, dass es nicht darauf ankommt ob und wie diese Theile verbunden sind. Beispielsweise ist ein Uhrwerk, das aus Rädern, Federn und dergleichen besteht, für Bolzano keine Menge, da es hier darauf ankommt, wie diese Theile verbunden sind.

Bolzanos Definition ist allerdings nicht sonderlich befriedigend, da er zur Definition des Begriffs „Menge“ den Begriff „Inbegriff“ verwendet, der lange Zeit als Synonym für „Menge“ verwendet wird (vgl. die nachfolgenden Anmerkungen zu Cantors Definition).

Definition (Cantor, 1895)[2]

Unter einer ‚Menge‘ verstehen wir jede Zusammenfassung $ M $ von bestimmten wohlunterscheidbaren Objecten $ m $ unserer Anschauung oder unseres Denkens (welche die Elemente von $ M $ genannt werden) zu einem Ganzen.

Anmerkungen

Laut Wußing[3] wurde die eigenltiche Mengenlehre 1874 von Georg Cantor mit der Abhandlung „Ueber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen“[4] begründet. In dieser Schrift beweist Cantor, dass die Menge der reellen Zahlen echt mächtiger als die Menge der natürlichen Zahlen ist. In den folgenden Jahren verfeinert Cantor die Grundideen der Mengenlehre in mehreren Abhabhandlungen zum Thema „Mannichfaltigkeitslehre“. Später ersetzt er die Begriffe „Inbegriff“ und „Mannichfaltigkeit“ durch den von Bolzano geprägten Begriff „Menge“.

Cantors Definition führt, wenn man eine uneingeschränkte Mengenbildung zulässt, zu Antinomien, d.h. zu logischen Paradoxien. Die berühmteste dieser Antonomienn, dass es keinen Menge geben kann, die alle Menge enthält, die sich nicht selbst enthalten, wurde 1902 erstmals von Bertrand Russell beschrieben und ist heute unter dem Namen Russellsche Antinomie bekannt. Allerdings waren Cantor ähnliche Antinomien bereits deutlich früher bekannt:

Laut Wußing „nahm [Cantor] die Existenz von Antinomien relative gelassen auf“.[3] Um derartige Paradoxien zu vermeiden, muss man die Mengenbildung einschränken. Man muss also zusätzlich festlegen, welches die „bestimmten“ Objekte sind, die man gemäß der Definition von Cantor in einer Menge zusammenfassen darf. Cantor hat in seinem Brief an Dedekind den Vorschlag gemacht, zwischen „Mengen“ und „inkonsistenten Vielfachheiten“ zu unterscheiden und damit die heute übliche Unterscheidung zwischen „Mengen“ und „Unmengen“ (= „echte Klassen“) vorweggenommen. Gemäß den Erkenntnissen von Cantor und Russell sind beispielweise die Allklasse, die Klasse aller Ordinalzahlen, die Klasse aller Kardinalzahlen sowie die Russellsche Klasse alles Unmengen,

Formale mathematische Definitionen

In der modernen Mathematik werden „Mengen“ selbst nicht mehr definiert (genauso wenig wie „Punkte“, „Gruppen“ etc.). Stattdessen geht man davon aus, dass es ein Universum von „Mengen“ gibt, für das bestimmte Regeln gelten. Diese Regeln werden im Rahmen der sogenannten Mengenlehre meist mit Hilfe der Prädikatenlogik erster Stufe oder der Prädikatenlogik erster Stufe mit Gleichheit formal festgelegt.

Heutzutage werden im Wesentlichen zwei prädikatenlogische Axiomensystem eingesetzt:

In beiden Axiomensystemen gibt es nur ein Prädikat, die so genannte Elementbeziehung: $x \in y$ („$x$ ist Element von $y$“). Weiter Prädikate, wie die Teilmengenbeziehung ($x \subseteq y$), die Gleichheit zweier Mengen ($x=y$) etc. können mit Hilfe der Elementbezziehung definiert werden:

  • $x \subseteq y \quad :\leftrightarrow\quad \forall e: e \in x \rightarrow e \in y$
  • $x = y \quad :\leftrightarrow\quad x \subseteq y \wedge y \subseteq x$ (in einer Prädikatenlogik mit Gleichheit ist dies ein beweisbarer Satz)
  • etc.

Während der Zermelo-Fraenkel-Mengenlehre ein Universum von „Mengen“ zugrunde liegt, wird in der Neumann-Bernays-Gödel-Mengenlehre ein allgemeiners Universum betrachtet: Ein Universum von „Klassen“. In diesem Univesum gibt es zwei Arten von Klassen: „Mengen“ und „Unmengen“. Eine Menge zeichnet sich dadurch aus, dass sie Element einer beliebigen Klasse ist. Eine Unmenge ist dagegen kein Element irgendeiner Klasse.

Anmerkungen

Die Russellsche Antinomie wird in jedem der zuvor beschriebenen Axiomensystemen durch eine (axiomatische) Beschränkung der Mengenbildung vermieden. In der Zermelo-Fraenkel-Mengenlehre kann die Russell-Menge nicht definiert werden, in der Neumann-Bernays-Gödel-Mengenlehre kann zwar die Russell-Klasse definiert werden. Bei dieser Klasse handelt es sich jedoch um eine Unmenge. Es gibt also auch hier keine Russell-Menge.

Die Frage, ob die Axiomensystemen der Mengenlehre nun, da die Russellsche Antinomie beseitigt wurde, widerspruchsfrei sind, kann nicht positiv beantwortet werden. In seinem zweiten Unvollständigkeitssatz beweist Kurt Gödel, dass hinreichend starke widerspruchsfreie Systeme ihre eigene Widerspruchsfreiheit nicht beweisen können.[9][10] Mit „hinreichend stark“ ist hier gemeint, dass die Arithmetik der natürlichen Zahlen im System formalisiert werden kann. Dies ist bei den Mengenlehreaxiomen der Fall.

Allerdings gibt es zahlreiche Beweise der Art „Wenn die Zermelo-Fraenkelsche-Mengenlehre widerspruchsfrei ist, dann ist auch das erweiterte/eingeschränkte System XYZ widerspruchsfrei“.[11]

Weitere Zusammenfassungen von Objekten

Mengen sind nicht die einzige Möglichkeit, „Objekte unserer Anschauung und unseres Denkens“ zu einer Einheit zusammenzufassen.

Die Definition von Cantor ist hinsichtlich des Aufbaus von Mengen etwas unpräzise. Für axiomatisch definierte Mengen und Klassen gelten jedoch folgenden zwei Eigenschaften:

  • Die Element-Beziehung legt keine Reihenfolge der Elemente fest: $\{a,b,c\} = \{c,b,a\} = \{b,a,c\} \ldots$
    (vgl. insbesondere Bolzanos Definition)
  • Zwei Klassen, die dieselben Elemente enthalten, werden als gleich bezeichnet und behandelt, unabhängig davon, wie oft eine Klasse ein Element enthält. Anschaulich bedeutet das, das eine Klasse jedes Element höchstens einmal enthält: $\{a,b,c\} = \{a,a,a,b,b,c,c,c,c,c\} = \{a,b,a,c,a\} \ldots$.

Andere Arten von „Objekt-Zusammenfassungen“ berücksichtigen die Anzahl und/oder die Reihenfolge der Elemente:

  • Tupel (Reihenfolge der Elemente liegt fest; Element können mehrfach vorkommen)
  • Liste (Reihenfolge der Elemente liegt fest; Element können mehrfach vorkommen)
  • Feld/Array (Reihenfolge und Anzahl der Elemente liegt fest; Elemente können mehrfach vorkommen)
  • assoziatives Feld (jedes Element hat einen eigenen Bezeichner; Elemente können mehrfach vorkommen)
  • Multimenge (Reihenfolge der Elemente ist undefiniert; Elemente können mehrfach vorkommen)

Alle diese Arten von Containern werden vor Allem im Programmiersprachen verwendet. Aus mengentheoretischer Sicht reicht es aus, das Paarmengenaxiom zu fordern. Damit können alle diese Arten von Containern mit Hilfe von Mengen nachgebildet werden (siehe insbesondere folgenden Artikel: Tupel).

TO BE DONE

Freges axiomatische Mengendefinition[12]

Quellen

  1. Bolzano (1975): Bernard Bolzano; Bolzano, Bernard: Gesamtausgabe – Einleitung in die Größenlehre und erste Begriffe der allgemeinen Größenlehre; Hrsg.: Jan Berg; Reihe: II, A; Band: 7; Verlag: Friedrich Frommann Verlag; Adresse: Stuttgart, Bad Cannstatt; ISBN: 978-3-7728-0466-3; Web-Link; 1975; Quellengüte: 5 (Buch), S. 152
  2. Cantor (1895): Georg Cantor; Beiträge zur Begründung der transfiniten Mengenlehre; in: Mathematische Annalen; Band: 46; Nummer: 4; Seite(n): 481 – 512; Verlag: B. G. Teubner Verlag; Adresse: Leipzig; ISSN: 00255831 (Papier), 14321807 (Online); Web-Link 0, Web-Link 1, Web-Link 2, Web-Link 3; 1895; Quellengüte: 5 (Artikel)
  3. 3,0 3,1 Wußing (2009): Hans Wußing; 6000 Jahre Mathematik – Eine kulturgeschichtliche Zeitreise – Von Euler bis zur Gegenwart; Hrsg.: H.W. Alten, A. Djafari Naini und H. Wesenmüller-Kock; Band: Band 2; Auflage: 1; Verlag: Springer-Verlag GmbH; Adresse: Berlin; ISBN: 3642023630; 2009; Quellengüte: 5 (Buch), S. 377
  4. Cantor (1874): Georg Cantor; Ueber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen; in: Journal für die reine und angewandte Mathematik; Band: 1874; Nummer: 77; Seite(n): 258 – 262; Verlag: Walter de Gruyter GmbH; Adresse: Berlin; ISSN: 14355345 (Print) 00754102 (Online); Web-Link 0, Web-Link 1, [ Web-Link 2]; 1847; Quellengüte: 5 (Artikel)
  5. Brief von Cantor an Hilbert vom 26. September 1897, Meschkowski, Nilson (1991): Georg Cantor; Georg Cantor: Briefe; Hrsg.: Herbert Meschkowski und Winfried Nilson; Auflage: 2; Verlag: Springer-Verlag; ISBN: 978-3540506218, 978-3642743450; 1991; Quellengüte: 5 (Buch)
  6. 6,0 6,1 Brief von Cantor an Dedekind vom 3. August 1899, Meschkowski, Nilson (1991): Georg Cantor; Georg Cantor: Briefe; Hrsg.: Herbert Meschkowski und Winfried Nilson; Auflage: 2; Verlag: Springer-Verlag; ISBN: 978-3540506218, 978-3642743450; 1991; Quellengüte: 5 (Buch)
  7. Burali-Forti (1897): Cesare Burali-Forti; Una questione sui numeri transfiniti; in: Rendiconti del Circolo Matematico di Palermo; Band: 11; Seite(n): 154–164; Verlag: Springer-Verlag; ISSN: 0009-725X; Web-Link; 1897; Quellengüte: 5 (Artikel)
  8. Brief von Cantor an Dedekind vom 30. August 1899, Zermelo (1932): Georg Cantor; Georg Cantor: Gesammelte Abhandlungen mathematischen und philosophischen Inhalts – Mit erläuternden Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel Cantor-Dedekind; Hrsg.: Ernst Zermelo; Auflage: 1; Verlag: Springer-Verlag; Adresse: Berlin; ISBN: 978-3662002544; Web-Link; 1932; Quellengüte: 5 (Buch), S. 448
  9. Gödel (1931): Kurt Gödel; Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I; in: Monatshefte für Mathematik und Physik; Band: 38; Nummer: 1; Seite(n): 173-198; Verlag: Springer-Verlag GmbH; Adresse: Wien; Web-Link; 1931; Quellengüte: 5 (Artikel)
  10. Schwichtenberg (2009): Helmut Schwichtenberg; Mathematical Logic; Hochschule: Ludwig-Maximilians-Universität; Adresse: München; Web-Link; 2009; Quellengüte: 5 (Skript)
  11. siehe z.B. Ebbinghaus (2003): Heinz-Dieter Ebbinghaus; Einführung in die Mengenlehre; Reihe: Hochschultaschenbuch; Auflage: 4; Verlag: Spektrum Akademischer Verlag; Adresse: Heidelberg, Berlin; ISBN: 3-8274-1411-3; 2003; Quellengüte: 5 (Buch)
  12. Frege (1893): Gottlob Frege; Grundgesetze der Arithmetik; Band: I; Verlag: Verlag Hermann Pohle; Adresse: Jena; Web-Link 0, Web-Link 1, Web-Link 2, Web-Link 3; 1893; Quellengüte: 5 (Buch)